FEATURES - Fast Access Times: 17/20/25/35 ns - Low-Power Standby when Deselected - TTL Compatible I/O - 5 V ± 10% Supply - Fully-Static Operation - Common I/O for Low Pin Count - JEDEC Standard Pinouts - Packages: 28-Pin, 300-mil DIP 28-Pin, 300-mil SOJ ### **FUNCTIONAL DESCRIPTION** The LH52253 is a very high-speed 256K-bit static RAM organized as $64K\times 4$. This RAM is fully static in operation. The Chip Enable (\overline{E}) reduces power to the chip when \overline{E} is inactive (HIGH). The combination of \overline{E} and \overline{W} control the mode of operation of the LH52253. Write cycles occur when both \overline{E} and Write Enable (\overline{W}) are LOW. Data is transferred from the DQ pins to the memory location specified by the 16 address lines. When \overline{E} is LOW and \overline{W} is HIGH, a static read of the memory location specified by the address lines will occur. Since the device is fully static in operation, new read cycles can be performed by simply changing the address. An Automatic Power Down feature reduces the current consumption when Read and Write cycles extend beyond their minimum cycle times. The LH52253 offers an Output Enable (\overline{G}) for use in managing the Data Bus. Bus contention during Write cycles may be easily avoided by using the \overline{G} input in the LH52253. High-frequency design techniques should be employed to obtain the best performance from these devices. Solid, low-impedance power and ground planes, with high-frequency decoupling capacitors, are recommended. Series termination of the inputs should be considered when transmission line effects occur. ## PIN CONNECTIONS Figure 1. Pin Connections for DIP and SOJ Packages SHARP 4-129 Figure 2. LH52253 Block Diagram ## **TRUTH TABLE** | Ē | W | G | MODE DQ | | I _{CC} | | |---|---|---|--------------|----------|-----------------|--| | Н | Χ | Χ | Not Selected | High-Z | Standby | | | L | Н | L | Read | Data Out | Active | | | L | Н | Τ | Read | High-Z | Active | | | L | L | Χ | Write | Data In | Active | | ## NOTE: X = Don't Care, L = LOW, H = HIGH ## **PIN DESCRIPTIONS** | PIN | DESCRIPTION | | | | | |----------------------------------|-----------------------|--|--|--|--| | A ₀ - A ₁₅ | Address Inputs | | | | | | $DQ_0 - DQ_3$ | Data Inputs/Outputs | | | | | | Ē | Chip Enable input | | | | | | W | Write Enable input | | | | | | G | Output Enable input | | | | | | V _{CC} | Positive Power Supply | | | | | | V _{SS} | Ground | | | | | 4-130 SHARP ## ABSOLUTE MAXIMUM RATINGS 1 | PARAMETER | RATING | |--|-------------------------------------| | V _{CC} to V _{SS} Potential | -0.5 V to 7 V | | Input Voltage Range | -0.5 V to V _{CC} + 0.5 V | | DC Output Current ² | ± 40 mA | | Storage Temperature Range | -65°C to 150°C | | Power Dissipation (Package Limit) | 1.0 W | #### NOTES: - 1. Stresses greater than those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating for transient conditions only. Function operation of the device at these or any other conditions above those indicated in the 'Operating Range' of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. - 2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time. ## **OPERATING RANGES** | SYMBOL | PARAMETER | MIN | TYP | MAX | UNIT | | |-----------------|---------------------------|------|-----|-----------------------|------|--| | T _A | Temperature, Ambient | 0 | | 70 | οС | | | V _{CC} | Supply Voltage | 4.5 | | 5.5 | V | | | Vss | Supply Voltage | 0 | | 0 | V | | | V _{IL} | Logic '0' Input Voltage 1 | -0.5 | | 0.8 | V | | | VIH | Logic '1' Input Voltage | 2.2 | | V _{CC} + 0.5 | V | | ## NOTE: ## DC ELECTRICAL CHARACTERISTICS | SYMBOL | PARAMETER | TEST CONDITIONS | | TYP 1 | MAX | UNIT | |------------------|--------------------------------|---|-----|-------|-----|------| | Icc1 | Operating Current ² | Outputs open, $t_{CYCLE} = 17 \text{ ns}$
$\overline{G} = V_{IH}$, $\overline{CE} = V_{IL}$, $\overline{WE} = V_{IL}$ or V_{IH} | | 70 | 150 | mA | | I _{CC1} | Operating Current ² | Outputs open, $t_{CYCLE} = 20 \text{ ns}$
$\overline{G} = V_{IH}, \overline{CE} = V_{IL}, \overline{WE} = V_{IL} \text{ or } V_{IH}$ | | 60 | 145 | mA | | I _{CC1} | Operating Current ² | Outputs open, t_{CYCLE} = 25/35 ns $\overline{G} = V_{IH}$, $\overline{CE} = V_{IL}$, $\overline{WE} = V_{IL}$ or V_{IH} | | 50 | 135 | mA | | I _{SB1} | Standby Current | $\overline{E} \ge V_{CC} - 0.2 \text{ V}$ | | 0.005 | 1 | mA | | I _{SB2} | Standby Current | E ≥ V _{IH} min | | 5 | 10 | mA | | ILI | Input Leakage Current | $V_{CC} = 5.5 \text{ V}, V_{IN} = 0 \text{ V to } V_{CC}$ | -2 | | 2 | μΑ | | ILO | I/O Leakage Current | $V_{CC} = 5.5 \text{ V}, V_{IN} = 0 \text{ V to } V_{CC}$ | -2 | | 2 | μΑ | | V _{OH} | Output High Voltage | I _{OH} = -4.0 mA | 2.4 | | | V | | V _{OL} | Output Low Voltage | I _{OL} = 8.0 mA | | | 0.4 | V | ### NOTES: - 1. Typical values at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. - 2. ICC is dependent upon output loading and cycle rates. Specified values are with outputs open, operating at specified cycle times. SHARP 4-131 ^{1.} Negative undershoot of up to 3.0 V is permitted once per cycle. LH52253 CMOS $64K \times 4$ Static RAM ## **AC TEST CONDITIONS** | PARAMETER | RATING | |-------------------------------------|------------| | Input Pulse Levels | Vss to 3 V | | Input Rise and Fall Times | 5 ns | | Input and Output Timing Ref. Levels | 1.5 V | | Output Load, Timing Tests | Figure 3 | ## CAPACITANCE 1,2 | PARAMETER | RATING | |--|--------| | C _{IN} (Input Capacitance) | 8 pF | | C _{DQ} (Input/Output Capacitance) | 8 pF | ### NOTES: - 1. Capacitances are maximum values at 25°C measured at 1.0 MHz with $V_{Bias}=0\ V$ and $V_{CC}=5.0\ V.$ - 2. Guaranteed but not tested. Figure 3. Output Load Circuit # AC ELECTRICAL CHARACTERISTICS ¹ (Over Operating Range) | SYMBOL | DESCRIPTION | -17 | | -20 | | -25 | | -35 | | UNITS | |------------------|--|-----|--------|-----|-----|-----|-----|-----|-----|--------| | 31 WIBOL | DESCRIPTION | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | 314113 | | READ CYCLE | | | | | | | | | | | | t _{RC} | Read Cycle Timing | 17 | | 20 | | 25 | | 35 | | ns | | t _{AA} | Address Access Time | | 17 | | 20 | | 25 | | 35 | ns | | tон | Output Hold From Address Change | 3 | | 3 | | 3 | | 3 | | ns | | t _{EA} | E Low to Valid Data | | 17 | | 20 | | 25 | | 35 | ns | | t _{ELZ} | E Low to Output Active 2,3 | 4 | | 4 | | 4 | | 4 | | ns | | t _{EHZ} | E High to Output High-Z 2,3 | | 8 | | 10 | | 10 | | 12 | ns | | t _{GA} | G Low to Valid Data | | 8 | | 10 | | 12 | | 15 | ns | | t_{GLZ} | G Low to Output Active 2,3 | 0 | | 0 | | 0 | | 0 | | ns | | t _{GHZ} | G High to Output High-Z 2,3 | 0 | 8 | 0 | 9 | 0 | 10 | 0 | 12 | ns | | t _{PU} | E Low to Power Up Time ³ | 0 | | 0 | | 0 | | 0 | | ns | | t _{PD} | E High to Power Down Time 3 | | 22 | | 25 | | 30 | | 35 | ns | | | | WRI | TE CYC | LE | | | | | | | | t _{WC} | Write Cycle Time | 17 | | 20 | | 25 | | 35 | | ns | | t _{EW} | E Low to End of Write | 12 | | 15 | | 20 | | 25 | | ns | | taw | Address Valid to End of Write | 12 | | 15 | | 20 | | 25 | | ns | | t _{AS} | Address Setup | 0 | | 0 | | 0 | | 0 | | ns | | t _{AH} | Address Hold From End of Write | 0 | | 0 | | 0 | | 0 | | ns | | t _{WP} | W Pulse Width | 12 | | 12 | | 15 | | 20 | | ns | | t _{DW} | Input Data Setup Time | 8 | | 10 | | 10 | | 12 | | ns | | t _{DH} | Input Data Hold Time | 0 | | 0 | | 0 | | 0 | | ns | | t _{WLZ} | W High to Output Active ^{2,3} | 4 | | 4 | | 4 | | 4 | | ns | | t _{WHZ} | W Low to Output High-Z ^{2,3} | | 6 | | 7 | | 8 | | 10 | ns | #### NOTES: - 1. AC Electrical Characteristics specified at 'AC Test Conditions' levels. - Active output to High-Z and High-Z to output active tests specified for a ±500 mV transition from steady state levels into the test load. C_{LOAD} = 5 pF. - 3. Guaranteed but not tested. CMOS 64K × 4 Static RAM LH52253 ## TIMING DIAGRAMS - READ CYCLE ## Read Cycle No. 1 Chip is in Read Mode: \overline{W} is HIGH, \overline{E} and \overline{G} are LOW. Read cycle timing is referenced from when all addresses are stable until the first address transition. Crosshatched portion of DQ implies that data lines are in the Low-Z state and the data may not be valid. ## Read Cycle No. 2 Chip is in the Read Mode: \overline{W} is HIGH. Timing illustrated for the case when addresses are valid when \overline{E} goes LOW. Data Out is not specified to be valid until t_{EA} , but may become valid as soon as t_{ELZ} . Valid Data will be present following t_{GA} only if t_{EA} timing has been met. Figure 4. Read Cycle No. 1 Figure 5. Read Cycle No. 2 SHARP 4-133 LH52253 CMOS $64K \times 4$ Static RAM ## **TIMING DIAGRAMS – WRITE CYCLE** Addresses must be stable during Write cycles. \overline{E} or \overline{W} must be HIGH during address transitions. The outputs will remain in the High-Z state if \overline{W} is LOW when \overline{E} goes LOW. Care should be taken so that the output drivers are disabled prior to placing the Input Data on the DQ lines. This will prevent bus contention, reducing system noise. These timing diagrams assume \overline{G} is LOW, but it should be kept HIGH during Write cycles to insure that the output drivers are disabled. ## Write Cycle No. 1 (W Controlled) Chip is selected: \overline{E} and \overline{G} are LOW. Using only \overline{W} to control Write cycles may not offer the best device performance, since both t_{WHZ} and t_{DW} timing specifications must be met. ## Write Cycle No. 2 (E Controlled) DQ lines may transition to Low-Z if the falling edge of \overline{W} occurs after the falling edge of \overline{E} . Figure 6. Write Cycle No. 1 Figure 7. Write Cycle No. 2 4-134 SHARP CMOS 64K × 4 Static RAM LH52253 ## **PACKAGE DIAGRAMS** 28-pin, 300-mil DIP 28-pin, 300-mil SOJ **SHARP** ## **ORDERING INFORMATION** 4-136 **SHARP**